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An account is given of the derivat ion of the differential  equations of motion of a non-Newtonian liquid and 
of heat  transfer in an orthogonal curvil inear system of coordinates.  The flow of this liquid in the form of a 
f i lm over a rotating disc of arbitrary shape is examined.  

The internal friction of many non-Newtonian liquids in uniform flow is well  described by the power law [1-3] :  

= K ~  '~.  (1) 

If the concept  of effect ive viscosity [1] is used, (1) may be written as 

= ~eff  ~, (2) 

where 

t~ eff : K @ - 1 .  

By analogy with Newton's general  hypothesis for a viscous liquid [4], the relat ion between stresses and rates of 
strain may be written for an incompressible non-Newtonian liquid in the form 

D = 21~ef f D  c (8) 

It follows from (8) that 

T ----- t~eff E.  (4) 

UDC 582.185 

T = KE ~. 

The analogous law of internal friction for plastic bodies was obtained in [7]. 

From (4) and (8) we obtain 

(5) 

Def f = KE n-1. (~) 

On the basis of (a) and (6) and the different ial  equations of motion of a continuous medium [4], we may obtain 
the different ial  equations of motion in ve loc i ty  components describing the general  ease of flow of a non-Newtonian l iq-  
uid in an orthogonal eurvil inear system of coordinates c h, oe, q3. 

For this it  is necessary to have a relat ion between the components of stress and rate of strain. 

From (8) and (6) we obtain 

P,, = - - p  , 2KEn_l( 1 Ov 1 v,, OH 1 va _OHt_~ 

f 0( ) 
P.,2 = - - P  2KE n-1 ( 1 Or2 , V a O H  2 , U 1 OHo \ 

P,3 : :  KE"--' =l-I- Oq-i \ -tta- ~- H---~ Oqa , 

p:,.~=__p_!_2KEn_l ( 1 Ova_{_ v, OH,~ v~ OHa ) 
oq3 H;H  oq---( +-n. , . ;  oU ' 
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The possibility of this kind of generalization was pointed out in [5], and the validity of a relation of type (4) was 
shown experimentally in [6]. 

Generalizing (I) to the case of three-dimensional flow, we have 



o 
H2 Oq~ q- H3 0q~' 

Substituting (7) into the equations of motion of a continuous medium in stress components, we have 

OU 1 V 1 OU1 
Ot H i Oq~ 

viv~ OH i 

-" Hill ~ Oq~ 
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(7) 
(cont'd) 

(8) 
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where 

E = { . 2 (  1 av__.L vo 0H........~1 + :'3 a H 1 )  2 
H1 Oq 1 4 Hall2 Oq2 H1H----~ Oqa + 

( t  Ov.__y_2 v3 OH___& vl 0H2 )'2+ 
+2 H2 Oq2 4 H2H,~ Oq3 -I H1H2 Oq 1 

+ 2 (  10v_._L v, OH..........&3 v2 OH3 ) 2 +  

Ha Oqa "~-[-]lPl----'~ Oql + H2H'-~ aq2 

+ 'H1 Oql + - -  H2 Oq~ 

-{- 142 Oq2 + H 3 0 q a \ H 2  " + 

+ H, Oq, ~ + N---~ Oq3 ~i-I, IJJ ' 

( o14, or, o~v,) 
- - ,  v i , - - ,  i----1 2, 3. M~ = M l-li. aq~ Oq~ aq~ ' . 

Relatiom for M 1, 1~, ~ were given in [8]. 

It is necessary to add to the set of equations (8) the equation of continuity [4]: 

a (v 1H2H3 ) + a (v2H3Hz) + ~  (v3H1H~)__O. Oqx ~ Oq~ (~) 

Equatiom (8) and (9) de~cribe the general ease of flow of a non-Newmnian liquid in arbitrary orthogonal eurvilin- 
ear coordinates. From these, in particular, we may obtain the equatiom of motion of a non-Newtonian liquid in rectan- 
gular, cylindrical, and spherical coordinates. For this, it is only necessary to have the appropriate Lam~ eocfficienU for 
these coordinates. 

A laminar flow regime [1] is characteristic of the processing of polymer materials. In this case, the heat flux is 
the sum of the heat due to conduction and that due to dissipation of mechanical energy. 

If it is assumed that the specific heat and the thermal conductivity are independent of temperature, the heat flux 
equation for non-Newtonian liquids, as for Newtonian liquids, has the form [4] 

Cp[OT ~ u I aro v2 aro v~ aro] 
A ~ + H10q~ + H20q2 + Ha Oq3/ ~ 

7. [ a (H2H 3 aTo 1 
= D ~ AI-I~I2H~ 7q-~q~ k ~ ~ 1  + (~o) 

a aro I a IH,H  aTOll 
~ Tq~ ~ ~ Oq2 l + -O-q.j ~ H3 aq31J " 

For non-Newtonian liquids D win be given by 

�9 H~ aq~ + ~IH----~ aq~ ~ HIH---~3 aq~ + 
1 Or2 vl aft., vl OH2 )o_ 

-[- H2 aq~-F HoH, aq----~ - - +  H~H2 aq----~- + 
- (11) 

1 Or3 Vl OH3 v,, OH3 )2 
+ I-1~ a% "+ I-I,H3 0q----~ +H---~ aq-----f- + 

' +  

+ HI aqx H2 Oq.. 

+ I-I~ aq~ + H~ aq3 + 
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H2 cgqe @ Ha c3qa (cont'd) 

It is not difficult to obtain from (10) and (11) the heat flux equation for a non-Newtonian liquid in rectangular, 
cylindrical, and spherical coordinates. 

We shall examine steady flow of a non-Newtonian incompressible homogeneous liquid, flowing over a rotating 
surface as a thin continuous laminar film. We shall use a special set of coordinates r, ~0, 6. 

~ ~  In the solution we shall assume the following conditions: 1) the 

' ~0 

. j o \  , Y  t 

surface is given by the equation (z = [( ]/~ + y2); 2) the angular 
velocity of rotation of the liquid is equal to the rate of rotation of the 
surface; 3) the liquid film thickness 6 0 is considerably less than the cor- 
responding coordinates l, r; 4) the flow is symmetrical about the axis 
of rotation of the surface; 5) the influence of friction forces between 
the film and the surrounding medium and of surface tension forces on 
the flow is insignificant; 6) the relative velocity of motion of the liq- 
uid film is considerably less than the circular velocity; 7) the radius 
of curvature of the surface is much greater than the filrn thickness; 8) 
the system of coordinates l, ~, 6 is rigidly tied to the rotating surface. 

From examination of Fig. 1 we may write 

Fig. 1. Diagram of liquid flow over sur- 
face. 

x '  = ( r - - g  s i n  ~,) c o s  q0, V' = 

- -  (c - -  g s i n  a)  s i n  q~, z'  = 

= z + ~ c 0 s ~ .  
Here 

/ " 
s i n ~ = - - j  \ d r /  ' c o s a = l  V 1- t -  -d)-- " 

The Lamg coefficients for this case, allowing for condition 3, are. H l = 1, H ,  .---- r, H~ = 1. Then the equa- 
tions of motion of a non-Newtonian liquid (7)-(8), allowing for the above conditions, have the form 

o [  in-1  I 
K O[ do 0~]  Ol ~ p Y ~ = 0 ,  

0___p_p = 0 ,  
Oq~ 

O--~-P -}-, p t:a = 0 .  
c?g 

(~2) 

(13) 

(14) 

The quantities F l and F 6 are given by 

Fr = to2 r cos ~ - -  g sin ~, F~ = - -  (to e r sin ~ -k g cos a). 

Integration of (14) gives 

p = p F~ ~ + C1 (l). 05)  

To determine CI(Z ), we use the condition that when 6 = 6o, p = P0- Thus, 

p = - -  (S o - -  ~) p F~ + Po. (16)  

From (16), knowing the equation of the surface, we can find the pressure at any point in a film of non-Newtonian 

liquid flowing over a rotating surface. 

Assuming that the mean pressure over the film thickness is given by 

133 



from (16), we have 

P m = ~  . pd~, 
0 

~0 �9 P m = - - ~ P F a  + p o .  1 (17) 

The relation for the velocity may be obtained by integrating (12), but, before integrating, we shall determine the 
order of importance of its terms. Differentiating (16) with respect to l, we obtain 

dp d ~o . dFa 
- -  p F~ ( %  - -  ~) p . . . .  

dl dl dl 

If Ctg a ~> ~o/l, then d p  ~ ~o~2 r ~o/1, p Ft ~ 9 to2 r c t g  ~. Therefore dp/dZ may be discarded. We shall esti- 
dl 

mate the value of angle a when the conaitton c tg  a >> go/I holds. It is known from experimental investigations that 
the film thickness may range from some tens of microns to several millimeters, and the length of the surface generator 
from several tens to several hundreds of millimeters. Therefore for ordinary cases ~o/[ ~ 10 -e .  Then the greatest val-  
ue of a may be in the range 75-80*. 

A single integration of (12) without account for dp/dZ gives 

C~(Z) is found from the condition of no friction on the film surface, i . e . ,  when g = g00vt/d ~ = 0. Then C2 (l) = 
= P Ft ~o. Allowing for the value of C2(Z), we find 

Ovt _ [ ( ;0-  ;) p Fl]  ~/~ 

Og --K " 

Further integration of this equation gives 

I 14-,n 

vz=- -  P F~ (~0--~) +C8(I). 

We find the value of C~(/) from the condition of adhesion of the liquid to the surface, i . e . ,  when 6 = 0 v /=  0. Thus, 
for v l we obtain 

l+n l+n 7 n 1 

(18) 

The mean value of the meridional, velocity over the film thickness may be determined from 

~o l + n  1 

1 v f l  ; - -  go ~ F: . 
vl m = Oo 1 @ 2 n  

0 

(19) 

Having an expression for VZm, from the equation of constancy of mass flow, q = 2~rr60vlm, it is not difficult to 
obtain a relation for the film thickness 

I n 

(2o) 

From (20), for a known F Z, we can calculate the thickness of a film of non-Newtouian liquid flowing over a rotat- 
hag surface. 

Let us examine the flow of a liquid over some actual surfaces. 

Curvilinear diffuser. The equation of the surface is given: 
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z = Br% (21) 

where  B > 0, a > 0. 

We consider that the liquid moves over the inside surface. Then we have 

oJ 2 r - -  B a g r  a -1  B a  r 2 r" q- g 

Fl = ] /  1 + ( B a r ' - l )  2 ' F~ = - -  V 1 -F (Bara -1 )  2 

In the special case when B = cIg  ~, a = 1, Eq. (21) is the equation of a conical surface. 

Spherical surface. Let the liquid flow over the inside surface of a rotating sphere. The origin of coordinates is lo- 
cared on the surface and on the axis of rotation. Then the equation of the spherical surface may be written as 

z = - -  ]/' R2 + r~ -l- R .  

b~ 

zJ~ .... 

I 

0 40 80 r 

Fig. 2. Dependence of film thickness (5~ ram) 

on radius of surface (r, ram) for a sphere (con- 

tinuous line), curved diffuser (dot-dash), and a 
conical surface (broken line): 1) n = 0,5; 

2) L o; 3) 2. o. 
For this case we have 

& = 1 / R  - -  r _ g ) ,  

f f lo 

1407[ ?, ~ / -  

120 z 

/ , / ' /  
: 80 / 

60 f - /  ' 

4 0 ~ . ~ _  ---4 - - . - ~  

0 " - - - - "  " 

/ 

/ 

i :# 
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Fig. 3. Dependence of pressure head 

(Pm - Po)/)', ram, on the length of 
�9 path l, ram; for notation, see Fig. 2. 

1 
F ~  = - -  m 

R 
(~2r= + g V R  ~ - -  r2). 

(22) 

Figures 2 and 3 show graphs of the dependence of the film thickness 50 on the radius, and of the pressure head on 

the path length of the liquid at various n for a sphere (R = 0.1 m), a cone (2~ = 75~ and a curved diffuser (B = 1, a = 

= 2 /3 .  

It can be seen from Fig. 2 that the film thickness increases as n increases. When r < 0.85 R, a spherical surface 

will have the least value of the film thickness, and a curved diffuser the greatest. In the region where r > 0.85 R, a 
sharp increase of film thickness is observed on the sphere. 

It may be seen from Fig. 9 that increase in n leads to increase in pressure head. With increase in the path length 

traced out by the liquid, the pressure head increases, particularly sharply in the case n = 2 for a spherical surface. The 

pressure head on a cone and on a curved diffuser varies only slightly along the length of a generator. 

In drawing the curves it was further assumed that: q = 5 �9 10 -5 m3/sec, w = 100 see "I, p = 980 N �9 sec2/m, K = 

= 9.8 N �9 s e c / m  2. 

NOTATION 

r-shear stress; ~-rate of shear strain; K and n-theological constants of the liquid; Do--stress deviator; Dg- 

strain rate deviator; p~ff-effective viscosity in the general flow case; peff-effective viscosity for one-dimensional 

flow; T-intensity of shear stresses; E-intensity of rates of shear strain; PIt, Pro, Ps3, Pro, PI3, P~s -stress tensor compo- 

nents; vl, v 2, v3-projected velocities on the axes ql, q~, %, respectively; HI, H2, H3~-Lamg coefficients; T~ - 

perature; cp--specific heat; l-thermal conductivity; A-thermal equivalent of work; D--function expressing dissipation 

of mechanical energy; l, ~0, 6-respectively, generator of the curved surface, longitude, and distance of a particle of 

liquid M from the surface; r-distance from surface to axis of rotation; a-angle between the tangent to the curve I at 
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the point M' and the abscissa axis; 2B--cone apex angle: x', y', z '-coordinates of particle M in a rectangular system; 
x, y, z-coordinates of the point M' lying on the surface; vl-meridional velocity; F l, F6--projections of mass forces in 
directions l and 6, respectively; p and p0-flow pressure and atmospheric pressure; 60-film thickness; p-density; q -  
flow of liquid per second; R-sphere radius; w--angular velocity of rotation of surface; g- force  of gravity. 
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