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FILM FLOW OF A NON-NEWTONIAN LIQUID OVER ROTATING SURFACES
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An account is given of the derivation of the differential equations of motion of a non-Newtonian liquid and
of heat transfer in an orthogonal curvilinear system of coordinates. The flow of this liquid in the form of a

film over a rotating disc of arbitrary shape is examined.
The internal friction of many non~Newtonian liquids in uniform flow is well described by the power law [1-3]:
T =Ky". (1)
If the concept of effective viscosity [1] is used, (1) may be written as
T = fieff V) @
where
Pegr = Ky

By analogy with Newton's general hypothesis for a viscous liquid [4], the relation between stresses and rates of
strain may be written for an incompressible non-Newtonian liquid in the form

D:s = 2!J.eff Da' (3)
It follows from (3) that
The possibility of this kind of generalization was pointed out in [5], and the validity of a relation of type (4) was
shown experimentally in [6].

Generalizing (1) to the case of three~dimensional flow, we have
T = KE". (5)
The analogous law of internal friction for plastic bodies was obtained in [7].
From (4) and (5) we obtain
* . . 1
pegr = KE", )

On the basis of (8) and (6) and the differential equations of motion of a continuous medium [4], we may obtain
the differential equations of motion in velocity components describing the general case of flow of a non-Newtonian lig-
uid in an orthogonal curvilinear system of coordinates q;, qp, dg.

For this it is necessary to have a relation between the components of stress and rate of strain.

From (3) and (6) we obtain
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Substituting (7) into the equations of motion of a continuous medium in stress components, we have
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where

H; 0 v, H 0 (v 2\
g ik
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Ml:M (Hi’ aHi 4 i avi ] av; )1 l=11 21 3
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Relations for My, M, M3 were given in [8].

2

It is necessary to add to the set of equations (8) the equation of continuity [4]:

0 0 0
—‘%4_1 (vy HoHy) 4 b‘cg(vzHaHﬂ ‘I‘Eq: (vsH,H,) = 0. 9

Equations (8) and (9) describe the general case of flow of a non-Newtonian liquid in arbitrary orthogonal curvilin-
ear coordinates. From these, in particular, we may obtain the equations of motion of a non-Newtonian liquid in rectan-

gular, cylindrical, and spherical coordinates, Forthis, it is only necessary to have the appropriate Lamé coefficients for
these coordinates.

A laminar flow regime 1] is characteristic of the processing of polymer materials. In this case, the heat flux is
the sum of the heat due to conduction and that due to dissipation of mechanical energy.

If it is assumed that the specific heat and the thermal conductivity are independent of temperature, the heat flux
equation for non-Newtonian liquids, as for Newtonian liquids, has the form [4]
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It is not difficult to obtain from (10) and (11) the heat flux equation for a non-Newtonian liquid in rectangular,
cylindrical, and spherical coordinates.

We shall examine steady flow of a non-Newtonian incompressible homogeneous liquid, flowing over a rotating
surface as a thin continuous laminar film. We shall use a special set of coordinates r, ¢, §.

Z w ' In the solution we shall assume the following conditions: 1) the

surface is given by the equation (z = f(}/ % -+ 4); 2) the angular
velocity of rotation of the liquid is equal to the rate of rotation of the
surface; 3) the liquid film thickness 8, is considerably less than the cor-
responding coordinates I, r; 4) the flow is symmetrical about the axis

Y, - of rotation of the surface; 5) the influence of friction forces between
W ¢r the film and the surrounding medium and of surface tension forces on
the flow is insignificant; 6) the relative velocity of motion of the lig-
uid film is considerably less than the circular velocity; 7) the radius
of curvature of the surface is much greater than the film thickness; 8)
s the system of coordinates I, ¢, & is rigidly tied to the rotating surface.

From examination of Fig. 1 we may write

x = (r—=8sina)cosg, y' =

—(r —3sina)sing, 2’ =

=2z -3 cosa.
Fig. 1. Diagram of liquid flow over sur- Here
) face.
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The Lamé coefficients for this case, allowing for condition 3, are: H; =1, H,=r, H; = 1. Then the equa-
tions of motion of a non-Newtonian liquid (7)-(8), allowing for the above conditions, have the form

0 du, "t Oy, op 12
: L — 25 Lo F, =0, (12)
Kaa[laa aa] ar
9 _
d¢

, (13)

op .
—"a—a~+pFa—~0 (14)

The quantities F; and Fs are given by
F, = o?rcosa—gsina, F; = —(o®rsina - gcosa).
Integration of (14) gives
p=pFsdCi(l). (15)
To determine Cy(l), we use the condition that when & = &, p = Po- Thus,
= — (89 —8)p Fs + po. (16)

From (16), knowing the equation of the surface, we can find the pressure at any point in a film of non-Newtonian
liquid flowing over a rotating surface.

Assuming that the mean pressure over the film thickness is given by
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from (16), we have
Gy -
Pm=_Tf‘Fs + Po. an

The relation for the velocity may be obtained by integrating (12), but, before integrating, we shall determine the
order of importance of its terms. Differentiating (16) with respect to I, we obtain

dp =pF; "d—so‘“(ao_a)P“{i‘Fa—'

dr di dl

If ctga>dyl, then LS no?rdy/l, pF,~ pw?rciga. Therefore dp/dl may be discarded. We shall esti-

mate the value of angle o when the condition ciga>>8y/ holds. It is known from experimental investigations that
the film thickness may range from some tens of microns to several millimeters, and the length of the surface generator
from several tens to several hundreds of millimeters. Therefore for ordinary cases 8,/ ~ 10~2. Then the greatest val-
ue of ot may be in the range 75-80°.

A single integration of (12) without account for dp/dl gives

d

Cy(Y) is found from the condition of no friction on the film surface, i.e., when 8 =3,00,/06 = 0. Then C, () =
=p F; 3. Allowing for the value of Cy(l), we find
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Further integration of this equation gives
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We find the value of Cg(Z) from the condition of adhesion of the liquid to the surface, i.e., when 6= 0 v;= 0. Thus,
for v we obtain

It Y on L
U= [Bon —(8p—10) " ]1—}—71 (0 FyK) ™. (18)
The mean value of the meridional velocity over the film thickness may be determined from
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Having an expression for vy, from the equation of constancy of mass flow, q = 2m8gvyy,, it is not difficult to
obtain a relation for the film thickness

1 n
s q (l—}—?n‘ ( K 77 1
h [Q'M’ A on ) pF, ) ' 20)

From (20), for a known Fj, we can calculate the thickness of a film of non-Newtonian liquid flowing over a rotat-
ing surface, :

Let us examine the flow of a liquid over some actnal surfaces,

Curvilinear diffuser. The equation of the surface is given:
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2 = Bra, (21
where B >0, a> 0.

We consider that the liquid moves over the inside surface. Then we have
w?r — Bagre—! : Ba 0?re 4- g
= —— F5 = — —— T
V' 1+ (Bare—1)2 V 14 (Bare—1y?

In the special case when B = ctgB, a = 1, Eq. (21) is the equation of a conical surface.

{

Spherical surface. Let the liquid flow over the inside surface of a rotating sphere. The origin of coordinates is lo-
cated on the surface and on the axis of rotation. Then the equation of the spherical surface may be written as
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Fig. 2. Dependence of film thickness (8, mm) 2 40 6 80 100 12 t

on radius of surface (r, mm) for a sphere (con- Fig. 3. Dependence of pressure head

tinuous line), curved diffuser (dot-dash), and a (Pm — Po)/7, mm, on the length of

conical surface (broken line): 1) n = 0,5; - path /, mm; for notation, see Fig. 2.
2) 1. 0; 3) 2.0,

For this case we have
Fi=p VR —g), Fi=—— (o 4 gV R,

Figures 2 and 3 show graphs of the dependence of the film thickness 64 on the radius, and of the pressure head on
the path length of the liquid at various n for a sphere (R= 0.1 m), a cone (28 = 75°%), and a curved diffuser B=1, a=
= 2/8.

It can be seen from Fig. 2 that the film thickness increases as n increases. When r < 0.85 R, a spherical smface
will have the least value of the film thickness, and a curved diffuser the greatest, In the region wherer > 0.85R, a
sharp increase of film thickness is observed on the sphere. -

It may be seen from Fig. 3 that increase in n leads to increase in pressure head. With increase in the path length
traced out by the liquid, the pressure head increases, particularly sharply in the case n = 2 for a spherical surface. The
pressure head on a cone and on a curved diffuser varies only slightly along the length of a generator.

In drawing the curves it was further assumed that: q =5 » 10-% m¥/sec, w= 100sec™, p= 980 N - sec’ m, K=
= 9,8 N - sec/m?.

NOTATION

T—shear stress; y—rate of shear strain; K and n—rheological constants of the liquid; Dg~stress deviator; Dg~
strain rate deviator; p&er—effective viscosity in the general flow case; pegf—effective viscosity for one~dimensional
flow; T—intensity of shear stresses; E~intensity of rates of shear strain; pyi, DPep: Pag» P12» Di3s Pag—StI€ss tensor compo-
nents; vy, Ve, Va—projected velocities on the axes q;, dp, qg, respectively; Hy, H,, Hg—Lamé coefficients; T°—tem-
perature; cp—specific heat; A—thermal conductivity; A-thermal equivalent of work; D~function expressing dissipation
of mechanical energy; I, ¢, d—respectively, generator of the curved surface, longitude, and distance of a particle of
liquid M from the surface; r—distance from surface to axis of rotation; o—angle between the tangent to the curve [ at
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the point M' and the abscissa axis; 28—cone apex angle; x', y', z'—coordinates of particle M in a rectangular system;
X, y, z—coordinates of the point M’ lying on the surface; vy—meridional velocity; Fj, Fg—projections of mass forces in
directions  and 8, respectively; p and po~flow pressure and atmospheric pressure; 6,—film thickness; p—density; q—
flow of liquid per second; R—sphere radius; w—angular velocity of rotation of surface; g—force of gravity.
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